«Deepfakes»: el pròxim repte en la detecció de notícies falses
Resum
Un deepfake o hipertrucatge és un vídeo hiperrealista manipulat digitalment per representar persones que diuen o fan coses que en realitat mai no van succeir. Aquestes representacions sintètiques, generades mitjançant tècniques informatitzades basades en intel·ligència artificial (IA), plantegen serioses amenaces per a la privacitat, en un nou escenari en el qual s’incrementen els riscos derivats de les suplantacions d’identitat. Amb la sofisticació de les tècniques per al desenvolupament de deepfakes, resulta cada vegada més complicat detectar si les aparicions públiques o declaracions de personatges influents responen a paràmetres reals o, per contra, són resultat de representacions fictícies. Aquest estudi té com a objectiu plantejar un estat de la qüestió a través de l’anàlisi de l’actualitat acadèmica i mitjançant una exhaustiva revisió bibliogràfica. En el present treball es busca donar resposta a les qüestions que plantegem a continuació, que entenem d’interès general, tant en un vessant econòmic i social com en diverses àrees de recerca: què són els deepfakes?, qui els produeix i quina tecnologia els dona suport?, quines oportunitats plantegen?, quins riscos s’associen a aquests documents multimèdia?, quins mètodes existeixen per combatre aquestes falsificacions? I emmarcant l’estudi en l’àmbit de la teoria de la informació: es tracta d’una revolució o d’una evolució de les fake news? Com sabem, les notícies falses influeixen en l’opinió pública i són efectives a l’hora d’apel·lar emocions i modificar comportaments. Podem assumir que aquests nous textos audiovisuals seran tremendament eficaços a l’hora de minar, més si fos possible, la credibilitat dels mitjans digitals, així com d’accelerar el ja evident esgotament del pensament crític.Paraules clau
deepfakes, notícies falses, aprenentatge profund, intel·ligència artificial, desinformacióReferències
ALDWAIRI, M. y ALWAHEDI, A. (2018). «Detecting Fake News in Social Media Networks». Procedia Computer Science, 141, 215-222. https://doi.org/10.1016/j.procs.2018.10.171
ANDERSON, K. E. (2018). «Getting acquainted with social networks and apps: combating fake news on social media». Library HiTech News, 35 (3), 1-6. https://doi.org/10.1108/LHTN-02-2018-0010
ANWAR, S.; MILANOVA, M.; ANWER, M. y BANIHIRWE, A. (2019). «Perceptual Judgments to Detect Computer Generated Forged Faces in Social Media». En: SCHWENKER, F. y SCHERER. S. (eds.). Multimodal Pattern Recognition of Social Signals in Human-Computer-Interaction. MPRSS, 2018. Lecture Notes in Computer Science, 11.377. Springer, Cham. https://doi.org/10.1007/978-3-030-20984-1_4
ATANASOVA, P.; NAKOV, P.; MÀRQUEZ, L.; BARRÓN-CEDEÑO, A.; KARADZHOV, G.; MIHAYLOVA, T.; MOHTARAMI, M. y GLASS, J. (2019). «Automatic Fact-Checking Using Context and Discourse Information». Journal of Data and Information Quality, 11 (3), art. n. 12. https://doi.org/10.1145/3297722
BORGES, L.; MARTINS, B. y CALADO, P. (2019). «Combining Similarity Features and Deep Representation Learning for Stance Detection in the Context of Checking Fake News». Journal of Data and Information Quality, 11 (3), art. n.º 14. https://doi.org/10.1145/3287763
BRITT, M. A.; ROUET, J.-F.; BLAUM, D. y MILLIS, K. (2019). «A Reasoned Approach to Dealing with Fake News». Policy Insights from the Behavioral and Brain Sciences, 6 (1), 94-101. https://doi.org/10.1177/2372732218814855
CHAWLA, R. (2019). «Deepfakes: How a pervert shook the world». International Journal of Advance Research and Development, 4 (6), 4-8. http://doi.org/10.22215/timreview/1282
CONSTINE, J. (2019). «Instagram hides false content behind warnings, except for politicians». TechCrunch. Recuperado de https://techcrunch.com/2019/12/16/instagram-fact-checking
CYBENKO, A. K. y CYBENKO, G. (2018). «AI and Fake News». IEEE Intelligent Systems, 33 (5), 3-7. https://doi.org/10.1109/MIS.2018.2877280
DAGDILELIS, V. (2018). «Preparing teachers for the use of digital technologies in their teaching practice». Research in Social Sciences and Technology, 3 (1), 109-121. http://doi.org/10.46303/ressat.03.01.7
DAY, C. (2019). «The Future of Misinformation». Computing in Science & Engineering, 21 (1), 108-108. https://doi.org/10.1109/MCSE.2018.2874117
FIGUEIRA, A. y OLIVEIRA, L. (2017). «The current state of fake news: challenges and opportunities». Procedia Computer Science, 121, 817-825. https://doi.org/10.1016/j.procs.2017.11.106
FLETCHER, J. (2018). «Deepfakes, Artificial Intelligence, and Some Kind of Dystopia: The New Faces of Online Post-Fact Performance». Theatre Journal, 70 (4), 455-471. ProjectMUSE. https://doi.org/10.1353/tj.2018.0097
FLORIDI, L. (2018). «Artificial Intelligence, Deepfakes and a Future of Ectypes». Philosophy & Technology, 31 (3), 317-321. https://doi.org/10.1007/s13347-018-0325-3
GOODFELLOW, I. J.; POUGET-ABADIE, J.; MIRZA, M.; XU, B.; WARDE-FARLEY, D.; OZAIR, S.; COURVILLE, A. y BENGIO, Y. (2014). «Generative Adversarial Networks». arXiv:1406.2661.
HAMBORG, F.; DONNAY, K. y GIPP, B. (2018). «Automated identification of media bias in news articles: an interdisciplinary literature review». International Journal on Digital Libraries, 20, 391-415. https://doi.org/10.1007/s00799-018-0261-y
HARRISON, S. (2019). «Instagram Now Fact-Checks, but Who Will Do the Checking?». Wired. Recuperado de https://www.wired.com/story/instagram-fact-checks-who-will-do-checking/
HASAN, H. R. y SALAH, K. (2019). «Combating Deepfake Videos Using Blockchain and Smart Contracts». IEEE Access, 7, 41.596-41.606. https://doi.org/10.1109/ACCESS.2019.2905689
JANG, S. M. y KIM, J. K. (2018). «Third person effects of fake news: Fake news regulation and media literacy interventions». Computers in Human Behavior, 80, 295-302. https://doi.org/10.1016/j.chb.2017.11.034
KEERSMAECKER, J. de y ROETS, A. (2017). «Fake news: Incorrect, but hard to correct. The role of cognitive ability on the impact of false information on social impressions». Intelligence, 65, 107-110. https://doi.org/10.1016/j.intell.2017.10.005
KÖHN, M.; OLIVIER, M. S. y ELOFF, J. H. (2006). «Framework for a Digital Forensic Investigation». ISSA 1-7.
KORSHUNOV, P. y MARCEL, S. (2019). «Vulnerability assessment and detection of deepfake videos». International Conference on Biometrics (ICB), 1-6. IEEE. http://doi.org/10.1109/ICB45273.2019.8987375
KWOK, A. O. y KOH, S. G. (2020). «Deepfake: a social construction of technology perspective». Current Issues in Tourism, 1-5. https://doi.org/10.1080/13683500.2020.1738357
LI, Y.; CHANG, M. C. y LYU, S. (2018). «In ictu oculi: Exposing AI created fake videos by detecting eye blinking». IEEE International Workshop on Information Forensics and Security (WIFS), 1-7. IEEE.
LIN, H. (2019). «The existential threat from cyber-enabled information warfare». Bulletin of the Atomic Scientists, 75 (4), 187-196. https://doi.org/10.1080/00963402.2019.1629574
LIV, N. y GREENBAUM, D. (2020). «Deep Fakes and Memory Malleability: False Memories in the Service of Fake News». AJOB Neuroscience, 11 (2), 96-104. https://doi.org/10.1080/21507740.2020.1740351
MACKENZIE, A. y BHATT, I. (2018). «Lies, Bullshit and Fake News: Some Epistemological Concerns». Postdigital Science and Education. https://doi.org/10.1007/s42438-018-0025-4
MARAS, M. H. y ALEXANDROU, A. (2019). «Determining authenticity of video evidence in the age of artificial intelligence and in the wake of deepfake videos». International Journal of Evidence & Proof, 23 (3), 255-262. https://doi.org/10.1177/1365712718807226
MOROZOV, E. (2013). «To save everything, click here: The folly of technological solutionism». Public Affairs.
PÉREZ, J.; MESO, K. y MENDIGUREN, T. (2021). «Deepfakes on Twitter: Which Actors Control Their Spread?». Media and Communication, 9 (1), 301-312. http://dx.doi.org/10.17645/mac.v9i1.3433
QAYYUM, A.; QADIR, J.; JANJUA, M. U. y SHER, F. (2019). «Using Blockchain to Rein in the New Post-Truth World and Check the Spread of Fake News». IT Professional, 21 (4), 16-24. https://doi.org/10.1109/MITP.2019.2910503
RADFORD, A.; METZ, L. y CHINTALA, S. (2015). «Unsupervised representation learning with deep convolutional generative adversarial networks». arXiv preprint arXiv:1511.06434.
RÖSSLER, A.; COZZOLINO, D.; VERDOLIVA, L.; RIESS, C., THIES, J. y NIEßNER, M. (2018). «Faceforensics: A large-scale video dataset for forgery detection in human faces». arXiv preprint arXiv:1803.09179.
VIZOSO, A.; VAZ-ÁLVAREZ, M. y LÓPEZ-GARCÍA, X. (2021). «Fighting Deepfakes: Media and Internet Giants’ Converging and Diverging Strategies Against Hi-Tech Misinformation». Media and Communication, 9 (1), 291-300. http://dx.doi.org/10.17645/mac.v9i1.3494
WAGNER, T. L. y BLEWER, A. (2019). «The Word Real Is No Longer Real: Deepfakes, Gender, and the Challenges of AI-Altered Video». Open Information Science, 3 (1), 32-46. https://doi.org/10.1515/opis-2019-0003
WESTERLUND, M. (2019). «The Emergence of Deepfake Technology: A Review». Technology Innovation Management Review, 9 (11), 39-52. http://doi.org/10.22215/timreview/1282
WHYTE, C. (2020). «Deepfake news: AI-enabled disinformation as a multi-level public policy challenge». Journal of Cyber Policy, 5 (2), 199-217. https://doi.org/10.1080/23738871.2020.1797135
Publicades
Descàrregues
Drets d'autor (c) 2021 Francisco José García-Ull
Aquesta obra està sota una llicència internacional Creative Commons Reconeixement 3.0.